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Constituency Parsing

* Some text spans are constituents (“units”)

e Each constituent has a label.
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Constituency Parsing - Labels

Table 1.2. The Penn Treebank syntactic tagset + Al | POS ta gs
ADJP Adjective phrase

ADVP Adverb phrase

NP Noun phrase

PP Prepositional phrase

S Simple declarative clause

SBAR Subordinate clause

SBARQ Direct question introduced by wh-element

SINV Declarative sentence with subject-aux inversion

SQ Yes/no questions and subconstituent of SBARQ excluding wh-element
VP Verb phrase

WHADVP Wh-adverb phrase

WHNP Wh-noun phrase

WHPP Wh-prepositional phrase

X Constituent of unknown or uncertain category

%
0
T

“Understood” subject of infinitive or imperative
Zero variant of that in subordinate clauses
Trace of wh-Constituent




(Only considering binary tree in this course for simplicity)

Constituency Parsing

1

Form a tree VP
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deep | | learning very [powerful]

e Each word is a constituent (their labels are POS tags)

* Some consecutive constituents can form a larger one.



Constituency Parsing

Each constituent is S
a node.

VP

NP ADJV

\
Iearning] IS l very i[powerful ]

e Each word is a constituent (their labels are POS tags)

Form a tree

* Some consecutive constituents can form a larger one.



Chart-based Approach

Book the flight through  Houston
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Source of image: https://web.stanford.edu/~jurafsky/slp3/13.pdf



Chart-based

binary multi-class
classification B classification

Constituent? Which label?
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NO Don’t Care NO Don’t Care
Constituent? Which label? Constituent? Which label?
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[deep Ilearning isl very powerful]




Chart-based — Classifier

Yes/No Label

Span Feature

Extraction
A
Pre-trained Model ELMO, BERT ...
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Chart-based

e Given a sequence with N tokens, then run the

classifier N(N-1)/2 times ......
(N-1)/ Contradiction!

YES YES
Constituent? Constituent?

s e 8 ] s




Inference Enumerate all possible trees, and use the classifier
to give scores.

Training? where you need CKY algorithm

[Stern, et al., ACL'17]




Transition-based

Input: The hungry cat meows .

Stack Buffer Action
0 The | hungry | cat | meows |. | NT(S)
L (S The | hungry | cat | meows |. | NT(NP)
> | (S| (NP The | hungry | cat | meows |. | SHIFT
3 | (S| (NP|The hungry | cat | meows | . SHIFT
s | (S| (NP|The | hungry cat | meows |. SHIFT
s | (S| (NP|The | hungry | cat meows | . REDUCE
6 | (S|(NP The hungry cat) meows | . NT(VP)
7| (S| (NP The hungry cat) | (VP meows | . SHIFT
s | (S| (NP The hungry cat) | (VP meows REDUCE
o | (S| (NP The hungry cat) | (VP meows) SHIFT
10 | (S| (NP The hungry cat) | (VP meows) |. REDUCE
i | (S (NP The hungry cat) (VP meows) .)

Source of image: https://arxiv.org/pdf/1602.07776.pdf




Transition-based [Dyer, et al., NAACL 16]

Stack - (empty at the beginning)

Buffer [deep] [Iearning] [ very ] [powerful ]

Actions
CREATE(X) SHIFT REDUCE
Create a More a token from Close a constitute
constitute X buffer to stack

(X=NP, VP ...)



Transition-based

- (empty at the beginning)

CREATE(S)

[deep] [Iearning] [ very ] [powerful ]




Transition-based

CREATE(S)

CREATE(VP)

CREATE(NP)  SHIFT

SHIFT
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RNN Grammar
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RNN Grammar — Training

RNN \
A
[deep][ Iearning]\
Network
RNN e

A
f CREATE(S) CREATE(NP)  SHIFT SHIFT\ REDUCE

Ground truth

e typical classification task
 RLis not needed RNN
A

(
[ very ] [powerful)




Grammar as a Foreign Language

Oriol Vinyals® Lukasz Kaiser*
Google Google
vinyalsgoogle.com lukaszkaiserfigoogle.com

Terry Koo Slav Petrov Ilya Sutskever

Google Google Google

terrykooldgoogle.com slavi@google.com ilyasullgoogle.com
Geoffrey Hinton [Vinyals, et al.,

Google ,

geoffhintonlgoogle.com NIPS 15]

Source of image: https://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf



Tree to Sequence Of course, you can try other tree

traversal approaches
[Liu, et al., TACL'17]

(S (NP deep learning ) (VP s

(ADJV very powerful ) ) )
Seq2seq!




Seq2seq v.s. RNN grammar

(S (NP deep learning ) (VP s

(ADJV very powerful ) ) )
[Vinyals, et al., NIPS’15]

CREATE(S) CREATE(NP)  SHIFT  SHIFT = REDUCE

CREATE(VP)  SHIFT  CREATE(ADJV)  SHIFT  SHIFT

REDUCE  REDUCE  REDUCE Dver, et al., NAACL'16]

[deep] [Iearning] [ very ] [powerful ]




Unsupervised Parsing?

Can we find parsing @
trees without label data?

Iearnmg] { lvery i [powerful ]

Reference: https://youtu.be/YIuBHB9Ejok

YES!
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